Appendix C

AP BIOLOGY CONCEPTS AT A GLANCE

BIG IDEA 1: The process of evolution drives the	
Enduring understanding 1.A: Change in the genetic makeup of a population over time is evolution.	Essential knowledge 1.A.1: Natural selection is a major mechanism of evolution.
	Essential knowledge 1.A.2: Natural selection acts on phenotypic variations in populations.
	Essential knowledge 1.A.3: Evolutionary change is also driven by random processes.
	Essential knowledge 1.A.4: Biological evolution is supported by scientific evidence from many disciplines, including mathematics.
Enduring understanding 1.B: Organisms are linked by lines of descent from common ancestry.	Essential knowledge 1.B.1: Organisms share many conserved core processes and features that evolved and are widely distributed among organisms today.
	Essential knowledge 1.B.2: Phylogenetic trees and cladograms are graphical representations (models) of evolutionary history that can be tested.
Enduring understanding 1.C: Life continues to evolve within a changing environment.	Essential knowledge 1.C.1: Speciation and extinction have occurred throughout the Earth's history.
	Essential knowledge 1.C.2: Speciation may occur when two populations become reproductively isolated from each other.
	Essential knowledge 1.C.3: Populations of organisms continue to evolve.
Enduring understanding 1.D: The origin of living systems is explained by natural processes.	Essential knowledge 1.D.1: There are several hypotheses about the natural origin of life on Earth, each with supporting scientific evidence.
	Essential knowledge 1.D.2: Scientific evidence from many different disciplines supports models of the origin of life.
BIG IDEA 2: Biological systems utilize free energy and molecular building blocks to grow, to reproduce, and to maintain dynamic homeostasis.	
Enduring understanding 2.A: Growth, reproduction, and maintenance of the organization of living systems require free energy and matter.	Essential knowledge 2.A.1: All living systems require constant input of free energy.

Enduring understanding 2.B: Growth, reproduction, and dynamic homeostasis require that cells create and maintain internal environments that are different from their external environments.	 Essential knowledge 2.A.2: Organisms capture and store free energy for use in biological processes. Essential knowledge 2.A.3: Organisms must exchange matter with the environment to grow, reproduce, and maintain organization. Essential knowledge 2.B.1: Cell membranes are selectively permeable due to their structure.
	Essential knowledge 2.B.2: Growth and dynamic homeostasis are maintained by the constant movement of molecules across membranes.
	Essential knowledge 2.B.3: Eukaryotic cells maintain internal membranes that partition the cell into specialized regions.
Enduring understanding 2.C: Organisms use feedback mechanisms to regulate growth and reproduction, and to maintain dynamic homeostasis.	Essential knowledge 2.C.1: Organisms use feedback mechanisms to maintain their internal environments and respond to external environmental changes.
	Essential knowledge 2.C.2: Organisms respond to changes in their external environments.
Enduring understanding 2.D: Growth and dynamic homeostasis of a biological system are influenced by changes in the system's environment.	Essential knowledge 2.D.1: All biological systems from cells and organisms to populations, communities, and ecosystems are affected by complex biotic and abiotic interactions involving exchange of matter and free energy.
	Essential knowledge 2.D.2: Homeostatic mechanisms reflect both common ancestry and divergence due to adaptation in different environments.
	Essential knowledge 2.D.3: Biological systems are affected by disruptions to their dynamic homeostasis.
	Essential knowledge 2.D.4: Plants and animals have a variety of chemical defenses against infections that affect dynamic homeostasis.

Enduring understanding 2.E: Many biological	Essential knowledge 2.E.1: Timing and	
processes involved in growth, reproduction,	coordination of specific events are necessary	
and dynamic homeostasis include temporal	for the normal development of an organism,	
regulation and coordination.	and these events are regulated by a variety of mechanisms.	
	Essential knowledge 2.E.2: Timing and coordination of physiological events are	
	regulated by multiple mechanisms.	
	Essential knowledge 2.E.3: Timing and	
	coordination of behavior are regulated by	
	various mechanisms and are important in	
	natural selection.	
BIG IDEA 3: Living systems store, retrieve, transmit, and respond to information essential to life processes.		
Enduring understanding 3.A: Heritable	Essential knowledge 3.A.1: DNA, and in some	
information provides for continuity of life.	cases RNA, is the primary source of heritable	
	information.	
	Essential knowledge 3.A.2: In eukaryotes,	
	heritable information is passed to the next	
	generation via processes that include the cell	
	cycle and mitosis or meiosis plus fertilization.	
	Essential knowledge 3.A.3: The chromosomal basis of inheritance provides	
	an understanding of the pattern of passage	
	(transmission) of genes from parent to	
	offspring.	
	Essential knowledge 3.A.4: The inheritance	
	pattern of many traits cannot be explained by	
	simple Mendelian genetics.	
Enduring understanding 3.B: Expression of	Essential knowledge 3.B.1: Gene regulation	
genetic information involves cellular and molecular mechanisms.	results in differential gene expression, leading to cell specialization.	
	Essential knowledge 3.B.2: A variety	
	of intercellular and intracellular signal	
	transmissions mediate gene expression.	
Enduring understanding 3.C: The processing	Essential knowledge 3.C.1: Changes in	
of genetic information is imperfect and is a	genotype can result in changes in phenotype.	
source of genetic variation.		
	Essential knowledge 3.C.2: Biological	
	systems have multiple processes that	
	increase genetic variation.	
	Essential knowledge 3.C.3: Viral replication	
	results in genetic variation, and viral infection can introduce genetic variation into the hosts.	

Enduring understanding 3.D: Cells communicate by generating, transmitting, and receiving chemical signals.	Essential knowledge 3.D.1: Cell communication processes share common features that reflect a shared evolutionary history.
	Essential knowledge 3.D.2: Cells communicate with each other through direct contact with other cells or from a distance via chemical signaling.
	Essential knowledge 3.D.3: Signal transduction pathways link signal reception with cellular response.
	Essential knowledge 3.D.4: Changes in signal transduction pathways can alter cellular response.
Enduring understanding 3.E : Transmission of information results in changes within and between biological systems.	Essential knowledge 3.E.1: Individuals can act on information and communicate it to others.
	Essential knowledge 3.E.2 : Animals have nervous systems that detect external and internal signals, transmit and integrate information, and produce responses.
BIG IDEA 4: Biological systems interact, and th complex properties.	nese systems and their interactions possess
Enduring understanding 4.A: Interactions within biological systems lead to complex properties.	Essential knowledge 4.A.1: The subcomponents of biological molecules and their sequence determine the properties of that molecule.
	Essential knowledge 4.A.2: The structure and function of subcellular components, and their interactions, provide essential cellular processes.
	Essential knowledge 4.A.3: Interactions between external stimuli and regulated gene expression result in specialization of cells, tissues, and organs.
	Essential knowledge 4.A.4: Organisms exhibit complex properties due to interactions between their constituent parts.
	Essential knowledge 4.A.5: Communities are composed of populations of organisms that interact in complex ways.
	Essential knowledge 4.A.6: Interactions among living systems and with their environment result in the movement of matter and energy.

Enduring understanding 4.B: Competition	Essential knowledge 4.B.1: Interactions	
and cooperation are important aspects of	between molecules affect their structure and	
biological systems.	function.	
	Essential knowledge 4.B.2: Cooperative	
	interactions within organisms promote	
	efficiency in the use of energy and matter.	
	Essential knowledge 4.B.3: Interactions	
	between and within populations influence patterns of species distribution and	
	abundance.	
	Essential knowledge 4.B.4: Distribution of	
	local and global ecosystems changes over	
	time.	
Enduring understanding 4.C: Naturally	Essential knowledge 4.C.1: Variation in	
occurring diversity among and between	molecular units provides cells with a wider	
components within biological systems affects interactions with the environment.	range of functions.	
	Essential knowledge 4.C.2: Environmental	
	factors influence the expression of the	
	genotype in an organism.	
	Essential knowledge 4.C.3: The level of	
	variation in a population affects population	
	dynamics.	
	Essential knowledge 4.C.4: The diversity of	
	species within an ecosystem may influence the stability of the ecosystem.	
SCIENCE PRACTICI	ES FOR AP BIOLOGY	
SCIENCE PRACTICE 1: The student can use rep		
	nd solve scientific problems.	
1.1 The student can create representations and	d models of natural or man-made phenomena	
and systems in the domain.		
	and models of natural or man-made phenomena	
and systems in the domain.		
1.3 The student can <i>refine representations and</i> and systems in the domain.	models of flatural of filan-filade prenomena	
1.4 The student can <i>use representations and m</i>	odels to analyze situations or solve problems	
qualitatively and quantitatively.	, , , , , , ,	
1.5 The student can reexpress key elements of	natural phenomena across multiple	
representations in the domain.		
SCIENCE PRACTICE 2: The student can use ma		
2.1 The student can <i>justify the selection of a mathematical routine</i> to solve problems.		
2.2 The student can <i>apply mathematical routines</i> to quantities that describe natural		
phenomena.		

2.3 The student can *estimate numerically* quantities that describe natural phenomena.

SCIENCE PRACTICE 3: The student can engage in scientific questioning to extend thinking or to guide investigations within the context of the AP course.

3.1 The student can *pose scientific questions*.

3.2 The student can *refine scientific questions*.

3.3 The student can evaluate scientific questions.

SCIENCE PRACTICE 4: The student can plan and implement data collection strategies appropriate to a particular scientific question.

4.1 The student can *justify the selection of the kind of data* needed to answer a particular scientific question.

4.2 The student can *design a plan* for collecting data to answer a particular scientific question.

4.3 The student can *collect data* to answer a particular scientific question.

4.4 The student can *evaluate sources of data* to answer a particular scientific question.

SCIENCE PRACTICE 5: The student can perform data analysis and evaluation of evidence.

5.1 The student can *analyze data* to identify patterns or relationships.

5.2 The student can *refine observations and measurements* based on data analysis.

5.3 The student can *evaluate the evidence provided by data sets* in relation to a particular scientific question.

SCIENCE PRACTICE 6: The student can work with scientific explanations and theories.

6.1 The student can justify claims with evidence.

6.2 The student can *construct explanations of phenomena based on evidence* produced through scientific practices.

6.3 The student can *articulate the reasons that scientific explanations and theories are refined or replaced.*

6.4 The student can *make claims and predictions about natural phenomena* based on scientific theories and models.

6.5 The student can evaluate alternative scientific explanations.

SCIENCE PRACTICE 7: The student is able to connect and relate knowledge across various scales, concepts, and representations in and across domains.

7.1 The student can *connect phenomena and models* across spatial and temporal scales.

7.2 The student can *connect concepts* in and across domain(s) to generalize or extrapolate in and/or across enduring understandings and/or big ideas.

